
Advances in Decision Technology and Intelligent Information Systems, Volume IV, K.J. Engemann and G.E. Lasker, Eds. 
The International Institute for Advanced Studies in Systems Research and Cybernetics, 2003, pp. 16-20 

16 

Algorithms for Optimal Switch Location: Concave Cost Functions 
 

Boris S. Verkhovsky, Yuriy S. Polyakov 
Computer Science Department, College of Computing Sciences 

New Jersey Institute of Technology, Newark, NJ 07102 
 

Keywords: switch location; hardware cost; concave cost function; local extrema; complexity 
 
Introduction 
Traditionally, in continuous problems formulated for optimal switch location the cost function 
that is linearly proportional to the flow and the distances, expressed in terms of convex lp norms, 
is considered (Love et al., 1988; Verkhovsky and Polyakov, 2002; Brimberg and Chen, 1998; 
Brimberg et al., 1998, Uster and Chen, 2000). Thus the total cost function in such a problem is 
convex. In reality, however, such a convex function with linear dependence on the distances is 
very rare. In this paper, we formulate a concave-cost switch location problem, which is more 
appropriate for practical applications, and provide several algorithms to solve it. 
 Every telecommunications link usually consists of some end equipment and many 
components that provide transmission media and assure good-quality transmissions. Examples of 
such equipment are echo suppressors in voice communications, repeaters, amplifiers, etc. Many 
different technologies exist to provide the above-mentioned features. 

Consider a set of technologies/hardware h=1,..,z and corresponding costs: 
( ) :h h hC d E dR= + , 

where d is the length of the transmission link, hE  is the cost of end equipment, and hR  is the cost 
of repeaters and other link hardware. Then the overall link cost, c(d), is  

( ) [ ]: min h hc d E dR= + , 
where minimization is done over all hardware h=1,..,z. The resulting function c(d) is piece-wise 
linear and satisfies the basic property of a concave function. 
 
Definition: Consider 0<u<1 and A a b B≤ < ≤ . f(x) is concave on an interval [A,B] if and only if 
the following property holds: for every pair of numbers a<b,  f[ua+(1-u)b]<uf(a)+(1-u)f(b). 
 
Traditional link-cost function 
The traditional formulation of the switch location problem is (Love et al., 1988): 

( ) ( )
1

min ,
n

i p i
i

W S w l S P
=

=∑      (1) 

where W(S)  is the total cost; n is the number of users;  iw  is the “weight” (flow) of the i-th user; 
1,..., ;i n=  1 2( , )i i iP a a=  is the given location of the i-th user; 1 2( , )S x x=  is the unknown 

location for the new switch. The distance between any iP  and S  is given by 
1/

1 1 2 2( , ) [| | | | ] , 1.p p p
p i i il S P x a x a p= − + − ≥  

The total cost function is convex and many approaches exist to solve this problem (Love et al., 
1988).  



 

 

 

17

Approximating concavity of link-cost function 
To incorporate concavity in the above expression, we make both the weight and distance 
concave functions. In other words, we raise the weighted distance to power that is less than one. 
The new formulation of problem (1) becomes 

( ) ( )/

1
min , , 2.

n
p q

c i c i
i

W S w l S P q p
=

= > ≥∑    (2) 

where  
/ 1/

1 1 2 2( , ) ( , ) [| | | | ] .
p q p p q

c i p i i il S P l S P x a x a⎡ ⎤= = − + −⎣ ⎦  
Since p/q < 1, it is obvious that the individual link cost function is concave of both the “weight” 

iw  and distance pl . Problem (2) can be applied to the two-switch location problem studied in 
(Verkhovsky & Polyakov, 2003). Alternative approaches to bringing concavity to problem (1) 
exist. They will be studied in our future research. 
 
Algorithms searching for optimal switch location 
Three algorithms are developed and studied to solve problem (2). They are all partially based on 
the generalized Weiszfeld procedure (Uster and Love, 2000) developed to solve problem (1). 
 
Direct iterative search: The first algorithm is a generalization of the Weiszfeld procedure to the 
concave case. The partial derivatives of (2) are taken and are set to zero: 

( ) ( )
11 1/

1 1 2 1
1

1 sign 0, 1, 2;
n pp q p p q

i k ik k ik i i
i

w p x a x a x a x a k
q

− −

=

− − − + − = =∑  

After substituting ( ) ( )signk ik k ik k ikx a x a x a− = − −  and isolating kx , the obtained equations 
can be used iteratively to approach the “optimal” (the found location might not be optimal) 
switch location and the following formulas can be derived for the next (r+1) iterate:  
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   (3) 

Since the total cost function is no longer convex, Direct Iterative Search (DIS) is not 
guaranteed to find the optimal location due to the following reasons: 1) multiple local minimums 
may be present and the found one is not guaranteed to be global; 2) DIS may land at a local 
maximum; 3) the global minimum is on the border of the domain. 

It is also obvious that expression (3) cannot be determined if one of the current 
coordinates coincides with a coordinate for one of the user points. To resolve this issue, 
exception handling routines trapping division by zero and exponentiation of zero and then 
restarting the procedure with slightly different initial coordinates are used. An alternative 
approach is to use a hyperbolic approximation (Uster and Love, 2000) wherever zero is possible. 
 
Incremental iterative search: Because of the above-mentioned difficulties present in DIS, 
another algorithm, Incremental Iterative Search (IIS), is now developed. The hypothesis on 
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which this algorithm is based: the global minimum gradually moves when q in problem (2) 
increases its value in small increments. 
 Let p and q be given, qt be the current value of parameter q. The algorithm starts at qt = p 
and applies DIS, which is guaranteed to yield the optimal location when p = 2 and can be slightly 
changed to always work for p > 2 (Uster and Love, 2000). Once DIS finds the optimal location, 
qt is incremented by q∆ and DIS is run again for the new value of qt. According to the above 
hypothesis, the global minimum should be somewhere close to the optimal location found in the 
previous step. Therefore, the global minimum for the new value of qt is found. Then this process 
repeats until qt becomes equal to q. Finally, when qt = q, the found optimal location should be 
the solution for the given p and q. 

The smaller is q∆ , the higher are the chances that the global minimum will be found. If 
the above hypothesis is true, this algorithm should always yield the global minimum unless DIS 
runs across a local maximum and stops there. 
 
Incremental classical search: The same idea as used for IIS is applied to Incremental Classical 
Search (ICS). The only difference is that once DIS is solved for p = q, a different algorithm is 
used for finding the local minimum at each value of qt. In this case, the built-in Mathematica 
function FindMinimum, which uses various methods due to Brent: the conjugate gradient in one 
dimension and a modification of Powell's method in several dimensions, is applied. The 
FindMinimum is a function that has been extensively used by many Mathematica users for more 
than a dozen of years and thus provides a good algorithm to check the correctness of DIS for 
incremental steps. 
 
Grid Search: Since all three of the above-mentioned algorithms are not guaranteed to be always 
true, another simple exhaustive procedure is used to always yield values close to the global 
minimum. The algorithm, which will be referred to as Grid Search (GS), divides the total cost 
function surface into a grid of mxn (in our case, 100x100). Then GS calculates the total cost for 
each of the nodes (points) of the grid using formula (2) and returns the coordinates for the node 
that gave the least total cost.  
 
Computer experiments and their analysis 
Coordinates and weights were randomly generated using the uniform distribution in 
Mathematica 4.1, a well-known scientific programming language developed by Wolfram 
Research, Inc. Weights were generated on (0,1). Coordinates were generated on (0,m), where m 
is the stretch factor. For all of the above calculations p = 2 was used. Sensitivity analyses on q 
(2..3), n (5..80), m (1..3) were conducted. 
 
Case 1. Dependence of the total cost on q: We ran 660 experiments considering four extreme 
cases: 1) n=5, m=1; 2) n=5, m=3; 3) n=80, m=1; 4) n=80, m=3. For each value of q, 30 
experiments were run. Results obtained for n=5, m=3 are displayed in Table 1. For q = 2, the 
DIS, IIS, and CIS degenerate to the Weiszfeld procedure and thus N.A. is used for IIS and CIS. 

As can be seen from the table, all three DIS-related algorithms gradually start failing 
when q gets larger. This fact can be easily explained from studying the total cost surface. The 
larger is q, the more local minimums start appearing. It is noteworthy that these new minimums 
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occur at the user points. In a sense, user points can be considered as seeds for local minimums. 
As can also be seen from the table, more and more optimal locations coincide with one of the 
user points for higher q. This again shows that the surface gradually changes from convex to 
multi-modal with the users being the causes for the local minima.  

 
Table 1. Number of times (out of 30) that the studied algorithms found the global minimum for different q. 

DIS IIS CIS GS
2.0 30 N.A. N.A. 30 21
2.2 29 30 30 30 20
2.4 29 29 29 30 27
2.6 26 26 26 30 29
2.8 24 25 25 30 30
3.0 24 25 25 30 30

q Number of correct solutions for each algorithm Number of 
coincidences

 
 
It can be seen that in the first extreme case, with q = 2, DIS always finds the global 

minimum. In the other case, when q = 3, global minimum always coincides with one of the user 
points. Thus a simple procedure calculating the total cost at each of the user locations and 
selecting a point with the minimum total cost (we will refer to it as Existing User Check, EUC) 
can determine the global minimum in the second case. 

The question that we get is why the hypothesis on which IIS and CIS were based failed to 
be true. The explanation is simple: new local minimums start appearing at existing user points 
located “far away” from the global minimum calculated for the previous values of q. Henceforth, 
location of the global minimum for some q is not guaranteed to be close to the one for q q+ ∆ . 
 
Case 2. Dependence of the total cost on n: We ran 600 experiments considering four extreme 
cases: 1) q=2, m=1; 2) q=2, m=3; 3) q=3, m=1; 4) q=3, m=3. For each value of n, 30 experiments 
were run. Results obtained for q=3, m=3 are displayed in Table 2. 
 

Table 2. Number of times (out of 30) that the studied algorithms found the global minimum for different n. 

DIS IIS CIS GS
5 24 25 25 30 30
10 28 28 28 30 28
20 28 28 28 30 24
40 30 30 30 30 16
80 30 30 30 30 13

Number of correct solutions for each algorithmn Number of 
coincidences

 
 
As can be seen from the table, the larger is n, the less are the chances for the DIS-based 
algorithms to fail. From the surface analysis it can be seen that the total cost function becomes 
more and more convex for higher n. When n = 80, the surface looks ideally convex. It is obvious 
because more users contribute to the total cost function and produce some clear overall picture. 
The less is n, the more local minimums the total cost function has and the more coincidences of 
the optimal location with one of the user points happen. Again local minimums mostly appear at 
the user points. Like in the previous case, all three DIS-based procedures were on the average 
giving the same results.  
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Case 3. Dependence of the total cost on m: We ran 510 experiments considering four extreme 
cases: 1) q=2, n=5; 2) q=3, n=5; 3) q=2, n=80; 4) q=3, n=80. For each value of m, 30 
experiments were run. Results obtained for q=3, n=5 are displayed in Table 3. 
 

Table 3. Number of times (out of 30) that the studied algorithms found the global minimum for different m. 

DIS IIS CIS GS
1.0 26 28 28 30 29
1.5 28 29 29 30 29
2.0 25 26 26 30 30
2.5 25 26 26 30 30
3.0 24 25 25 30 30

m Number of correct solutions for each algorithm Number of 
coincidences

 
 
Although there is no clearly seen dependence that is true for all cases, larger m usually 
corresponds to situations when the number of coincidences between the global minimum and one 
of the user points becomes larger, the DIS-based procedures have higher chances to fail, and 
more local minimums start appearing. 
 
Conclusions 
Since in all of the above experiments, the three DIS-based algorithms demonstrated 
approximately the same correctness, DIS is the preferred method due to its least complexity 
compared to IIS and CIS. Moreover, in all of the cases when DIS failed to converge to the global 
minimum, one of the user points was that optimal location. Therefore, in cases where DIS might 
fail, both DIS and EUC need to be run, and the location corresponding to the least total cost is 
the optimal location. The experiments showed that this combined algorithm is necessary when n 
< 40 and q is in the range of 2..3. On the other hand, when n > 40 for the same range of values 
for q, DIS by itself correctly gives the optimal location. Since uniform random distribution was 
used to generate the user points for the experiments, the ranges of n and q for each of the two 
cases might be different if some special initial configuration is considered. 
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