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Abstract  
 
A new accelerated algorithm to solve the single-facility minisum location problem is 
developed. The acceleration is achieved using a feedback factor. The proposed algorithm 
converges faster than the accelerating procedures available in the literature. Being nearly 
as simple as the classical Weiszfeld procedure, the new method can easily be 
implemented in real applications. Practical subroutines dealing with special cases in the 
minisum problem are also provided. 
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1. Introduction 
 
The Fermat-Weber (continuous single-facility minisum) problem is thoroughly studied in 
the literature [1]. It deals with placing a new facility on the plane so as to minimize the 
sum of “weighted” distances from the facility to a set of fixed planar points. Finding an 
optimal position for a warehouse of a multi-store company or locating a data switch on a 
network with many users are among many tasks where the continuous single facility 
minisum problem can be successfully applied to. When the distances are given by the lp 
norm, the problem is formulated as follows: 
 

( ) ( )
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W S w l S P
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=∑ ,                            (1) 

 
where W(S)  is the total “weighted” distance; n is the number of fixed points (also 
referred to as customers);  iw  is the “weight” (demand) of the i-th customer; 1,..., ;i n=   

( , )i i iP a b=  is the given location of the i-th customer (demand point); ( , )S x y=  is the 
unknown location of the new facility.  
The distance between any iP  and S  is given by     
 

1/( , ) [| | | | ] , 1.p p p
p i i il S P x a y b p= − + − ≥               (2) 

 
In practice, the “weight” is thought to be proportional to the demand of the  i-th customer, 
and ( ),i p iw l S P  is related to the cost of service provided by the facility at S to meet the 
demand of the i-th customer. 

Problem (1) has a long history of research [1]. The most common method for 
solving the problem is based on a one-point iterative algorithm, which was originally 
developed by Weiszfeld [2] in 1937 for Euclidian distances ( 2p = ). The method was 
rediscovered by Miehle [3] and Cooper [4] about 20 years later and by the first author of 
this paper about 25 years ago.  

One can obtain expressions for the generalized Weiszfeld Iterative Algorithm 
(WIA) by writing the total weighted distance W(x,y). Then the partial derivatives 

( , ) /W x y x∂ ∂ and ( , ) /W x y y∂ ∂  are set to zero: 
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After substituting ( ) ( )signi i ix a x a x a− = − −  and ( ) ( )signi i iy b y b y b− = − −  and 
isolating x and y, the obtained equations can be used iteratively to approach the optimal 
center location and the following formulas can be derived for the next (r+1) iteration [1, 
10]: 
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where ( ) ( ) ( )( , )r r rS x y=  is the point obtained in the previous iteration.   

Although the single-facility minisum problem has been studied for many decades, 
the recent publications show that this problem is far from being exhausted [5-10]. 
Brimberg and Love [5, 6] recently proved the convergence of the generalized WIA with 
1 2p≤ ≤ . It was shown in [7] that the convergence in the case of 2p >  can be achieved 
by introducing a step size factor depending on p. The problem of singularities in the WIA 
is discussed for both Euclidian [8, 9] and lp distances [10]. 

Accelerating the convergence of descent methods such as the WIA usually 
involves selecting alternate step sizes [11]. The first attempt was based on the 
Steffensen’s iteration [12]. The method is not globally convergent, although it may be 
used to accelerate the local convergence for the WIA. At the same time, the acceleration 
effect achieved in [12] is reduced because the Steffensen’s iteration involves additional 
complexity. Drezner [13] applies a variable factor λ  to multiply the step size of the WIA 
for Euclidian distances ( 2p = ). In this case, the WIA is proven to converge only if 
1 2λ≤ <  [14]. At the same time, the value of λ , which is recalculated at each iteration, 
may exceed two [13]. It was also shown in [13] that the number of iterations produced by 
the variable λ  method is insignificantly reduced, as compared to that yielded by the 
method with constant 1.8λ = . As recalculating λ  at each iteration significantly increases 
the algorithm complexity, the overall acceleration, as compared to 1.8λ = , is 
questionable. Another approach [15] is based on the assumption that the differences 
between points obtained in two consecutive iterations form a geometric series, and the 
limit of this series is the next iterate. Despite some non-converging cases, which could be 
rectified by replacing a special parameter with the value corresponding to 1.8λ = , the 
procedure [15] yields a significant reduction in the number of iterations, as compared to 

1.8λ = , for low values of n. At the same time, this approach almost doubles the 
complexity of each iteration, and so the overall acceleration is not clear. Acceleration of 
the generalized WIA for pl  distances was studied in [16, 17].  

This paper is focused on developing an accelerated algorithm for the case of 
Euclidian distances ( 2p = ) and is a further development of the results obtained in [26]. 
The idea is to multiply the WIA iterate by a so-called feedback factor, which is the ratio 
of the current WIA iterate and the previous iterate value resulting from the accelerated 
algorithm. Our goal is to demonstrate that this method can reduce the number of 
iterations and be faster than the existing procedures for solving the minisum problem. As 
the complexity of this algorithm is very close to that of the WIA, it can easily be 
implemented in engineering practice. In addition, the proposed algorithm can be used in 
solving the Multi-Facility Location Problem (MFLP) since the single-facility minisum 
problem can be used as a subroutine to solve the MFLP. In this case, the single-facility 
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problem would be applied for each iteration and the overall complexity of the MFLP 
would strongly depend on the computational complexity of the single-facility problem. 
 
2. Accelerated algorithm 
 
To accelerate the WIA we multiply the Weiszfeld iterate by a feedback factor and, 
therefore, we will refer to this algorithm as Feedback Algorithm for Single Facility 
Location (FASFL). Feedback accelerators are thoroughly studied in the earlier 
publications of the first author [19-25]. We considered two kinds of approaches: first, 
when the factor is the same for both x and y; second, when the factors are different for x 
and y.  

In the first case, the factor that gave the most acceleration was found to be: 
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where *γ  is the factor itself, ( )wf a  is the next WIA iterate for coordinate a determined 
by formula (3) for 2p = , t is some parameter, and r is the iteration number. Multiple 
calculations showed that there is no static t that always yields the least number of 
iterations. In fact, t varied from -1 to 4 or more. In addition, the acceleration increase was 
on the average less significant than for the approach described below. 
 In the second case, the factor that yielded the least number of iterations is 
expressed as 
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where ( 1)rX −  is the coordinate (x or y) for the previous iterate. We experimentally found 
that t = 1 is the optimal value in all cases, except when the optimal center location 
coincides with one of the demand points (discussed later). Numerous computer 
experiments demonstrated that this method gives a significant acceleration. At each 
iteration, the WIA iterate is adjusted in the direction to the optimal location. The fact that 
factor γ  has different values for the x- and y-coordinates allows the FASFL to follow a 
converging sequence that forms a curved trajectory. The accelerated next iterates are 
given by 

( ) ( )2 2( 1) ( 1)
* *

1 1( ) ( );
r r

r rr r

x y
x y

x y

+ +

+ += = .             (4) 

 
Let us consider singularities and cases when the found location coincides with one 

of the demand points.  Suppose we get an iterate equal to one of the demand points. Then 
division by zero takes place. Although this situation usually happens only for lp norms 
and/or multi-facility problems, it may also occur, at least theoretically, in a single facility 
problem with Euclidian distances. There are several ways to deal with this singularity. 
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The most common approach is to use a hyperbolic approximation [1, 7, 17]. For 
Euclidian distances, we can easily avoid this singularity. Suppose that ( )r

kS P= . 

Expression (3) for ( )1rx +  can be rewritten as: 
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Now we multiply both the numerator and denominator by ( )

2 ( , )r
kl S P  to avoid division 

by zero: 
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Since the two sums are multiplied by zero, we have ( 1)r
kx a+ = . Obviously, the same 

applies to the y-coordinate, and correspondingly, ( 1)r
ky b+ = . The same approach can be 

extended to pl  distances. 
Another special case may occur when the found center location coincides with 

one of the demand points. In this case, a special test is commonly used to find out 
whether the demand point is optimal [1]. However, if the point is not optimal, the test 
does not provide any clue as to what direction the algorithm should take to look for the 
optimal location. To this end, we developed a special subroutine, the so-called kick-out 
procedure, the pseudo-code for which is given below: 

 
1) If iS P=  then remove iP  and rerun the procedure. 
2) If iS P=  again then  

{ iP  is optimal. stop.} 
else  

{Consider a neighborhood of iP : 
( , ); ( , ); ( , ); ( , );i i i i i i i ia z b z a z b z a z b z a z b z+ + + − − + − −  
if ( )iW P  is smaller than W in each of the neighboring points then 

  { iP  is optimal. stop.} 
else 
 {Suppose min ( , )S f g=  - point corresponding to the smallest W. 
 if 2 0if a− >  then : 2 ;ix f a= −  else :x z= ; 
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 if 2 ig b−  > 0 then : 2 ;iy g b= −  else : ;y z=  
Restart the procedure from the beginning with the new starting values of x and y.} 

} 
 
Most of the steps above are self-explanatory. The final step (last “if-else” clause) is run to 
determine if iP  gives the minimal cost compared to its neighbors. If not, the next starting 
point is taken in the direction of the point that gave the least sum. It is noteworthy that 
one can achieve a reduction in the complexity of the comparison iS P=  by presorting 
the demand points lexicographically and then applying binary search to compare the 
values of the x-coordinate for the i-th demand point and the current iterate. 

In addition, a bound or stopping rule is required to terminate the FASFL. For this 
purpose, there exist various approaches, such as: rectangular bounding method [18], 
acceptable deviation from a calculated bound on the optimal value of the objective 
function [1], difference between two successive values of the objective function, etc. For 
simplicity, we will use the distance between two consecutive points as the stopping 
parameter, which will be referred to as ε . 

The FASFL converged in all our calculations. However, in cases when the 
optimal location coincided with one of the demand points, the convergence took much 
longer than the WIA. We noticed that in these cases the procedure starts to oscillate 
around the optimal value while the amplitude of this oscillation around the optimal 
location decreases extremely slowly. This results in a slow convergence. To remedy this 
situation we introduced the following statements: 

if        * * * *
1 2 1( ) ( ) 0r r r rx x x x+ + +− × − <  then 

* *
* 1 2

2 :
2

r r
r

x xx + +
+

+
=  ;   (5) 

if         * * * *
1 2 1( ) ( ) 0r r r ry y y y+ + +− × − <  then 

* *
* 1 2

2 :
2

r r
r

y yy + +
+

+
=  ; 

 
When an iterative procedure oscillates around the optimal point approaching it slowly, 
taking the average may be helpful to come faster to the optimal point. Our calculations 
show that this correction fixes the slow convergence issue and gives approximately the 
same number of iterations as the uncorrected algorithm for all other cases. 
 
3. Computer experiments 
 
To evaluate the performance of the FASFL, it was compared with the WIA and two 
acceleration procedures described below. Most of the existing accelerating approaches 
can be reduced to the following formula: 
 

0 1 0' ( )x x x xλ= + −                             (6) 
 
where 'x  is the accelerated next iterate, λ  is the acceleration factor, 1x  is the WIA next 
iterate, and 0x  is the previous iterate. It is easy to see that 1λ =  corresponds to the WIA 
approach. 1.8λ =  was found to be the optimal value when λ  is constant [13]. Two 
accelerating procedures dealing with variable λ  are reported in [13, 15]. The procedure 
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in [15] looks faster, simpler, and, therefore, more practical. So the FASFL will be 
compared with this procedure. It should be noted that every iteration in the procedure 
[15] requires calculation of two sequential iterates by formula (3). As a result, the 
complexity of every iteration is almost doubled. Consequently, to get the actual number 
of iterations, as compared to the FASFL, we have to multiply the number of iterations 
obtained in this approach by a factor of two. Mathematically, it will be expressed by 
introducing a parameter c related to complexity. Accordingly, for the procedure in [15] 
c is equal to 2 and 1 for all other algorithms, where the additional acceleration 
complexity can be neglected. 

First, we considered a typical problem where random weights and coordinates 
were uniformly generated in a closed interval [0,1]. In all calculations, as well as for the 
uniform generation of random numbers, we used Mathematica 4.1. We took classical 
cases when n=5, 10, 50, 100, 500, and 1000 [13, 15]. For every n we ran one hundred 
problems. As the stopping parameter we used 510ε −= .  

The results summarized in Table 1 show, that on the average, the FASFL provides 
better performance than any other procedure for any value of n. The acceleration is 5%-
17% compared to the next fastest algorithm, where λ  is constant and equal to 1.8. In the 
calculations, the FASFL converged to the same optimal points, as did the other 
procedures. Note that the FASFL acceleration compared to the WIA increases for higher 
n. 

 
Table 1. Comparison of the accelerating procedures for points generated in [0,1]. 
Number of iterations. 
             

λ=1 (c=1) λ=1.8 (c=1) λ' (c=2)* FASFL (c=1) Number 
of points Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. 

n=5 5 362 47.45 7 262 32.61 6 208 33.66 6 236 27.05 
n=10 7 140 31.09 5 99 19.78 6 180 22.9 5 94 16.93 
n=50 6 40 15.32 4 30 8.01 6 30 10.3 4 23 7.6 

n=100 7 23 13.45 4 24 6.53 4 18 8.1 3 12 5.95 
n=500 7 14 11.01 3 7 4.91 4 10 6.28 3 7 4.43 
n=1000 7 15 10.25 3 7 4.66 4 8 5.9 3 7 3.96 

             
* - c = 2 accounts for almost double complexity for each iteration    
 

Then we considered another classical case, in which demand points are distributed 
randomly, using the uniform distribution function built in Mathematica 4.1, over a 
100x100 square. The weights were randomly selected between 1 and 100. The same 
values of n and the number of problems for each n were taken. In this case, the stopping 
parameter 310ε −=  was used. The acceleration is 5%-22% compared to the next fastest 
algorithm, where λ  is constant and equal to 1.8. The results summarized in Table 2 show 
exactly the same behavior as in Table 1: the FASFL is the fastest. 



B. S. Verkhovsky & Y. S. Polyakov                                  Feedback Algorithm for the Single-Facility Minisum Problem 
Annals of the European Academy of Sciences, 2003, pp. 127-136 

 134

 
Table 2. Comparison of the accelerating procedures for the 100x100 square case. 
Number of iterations. 
             

λ=1 (c=1) λ=1.8 (c=1) λ' (c=2)* FASFL (c=1) Number 
of points Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg. 

n=5 6 288 40.9 6 184 29.53 6 338 30.5 6 171 23.14 
n=10 7 111 26.1 5 71 16.36 6 118 18.96 4 64 13.79 
n=50 10 29 15.5 4 22 7.91 6 32 10.18 5 21 7.54 

n=100 9 24 13.4 4 25 6.7 6 28 8.58 3 20 6.29 
n=500 8 15 11 3 6 4.89 4 12 6.18 3 7 4.46 
n=1000 7 13 10.4 3 7 4.7 4 10 6 3 7 4.14 

             
* - c = 2 accounts for almost double complexity for each iteration 
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4. Conclusions 
 
The FASFL in which the current WIA iterate is multiplied by the feedback factor shows 
the better performance than the existing accelerating procedures for the single-facility 
minisum problem. Along with the subroutines developed to handle special cases, the 
algorithm is simple and can be used for a wide range of practical location problems: 
communication networks design, location of various service providing centers, location 
of emergency services, etc. In addition, the FASFL can be used as an efficient subroutine 
to solve the multi-facility location problem. 
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