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Introduction  
To communicate through satellites many large business corporations and governmental and 
military offices now rely on earth stations (ES), which are more complex and more expensive 
than relatively cheap, low-throughput, and low-quality “dishes” capable of simultaneous 
communication with only one or very few satellites. At the same time, medium or small “size” 
companies usually cannot financially afford an individualized ES and thus they have to share an 
ES with several other users to reduce the costs. Therefore an important role in acquring, 
installing, and maintaining ES’s is now played by communications companies.  

Communications industry has recently become very competitive.  To reduce its expenses and 
make it more economically attractive for potential customers, a communication company needs 
to determine how many ES’s of each type it needs, where to allocate them, and how the 
customers need to be interconnected with these earth stations.  A correct decision can save 
dozens or even hundreds of millions of dollars annually, and hence can attract more users. The 
present paper describes an algorithm to solve this type of optimization problems. 

Most of the existing approaches to solve such problems can be split into three categories: 
exact, where the optimal clusters and switch locations are mathematically guaranteed to be 
correct; heuristic, which are much faster than exact methods, but do not always yield the optimal 
solution; and hybrid, where heuristic methods are used to approach the optimal partition and then 
exact methods are used to obtain the final solution. A good review of all three types of 
approaches is presented in (Brimberg et al., 2000)  

In this paper, we focus on the two-switch (ES) case for Euclidian distances. The following 
exact methods have been studied to solve this problem: exponential (Kakusho, 1982), separation 
line (Drezner, 1984), and D.-C. (Differences of Convex functions) programming (Chen et al., 
1998). Although the proposed heuristic algorithm is in some sense similar to the minisum 
algorithm studied in (Drezner, 1984), it provides much faster, O(logn), solutions as it is 
demonstrated in the paper.  
 
Problem definition for multi-switch location problem 
For the sake of generality, we refer to ES’s as switches. 
1) Consider locations of n users which are specified by coordinates Pi = (ai, bi), i=1,…, n.  Each 

user is characterized by a “volume” of incoming and outgoing communication flow wi 
(“weight” of i-th user’s flow). 

2) Let m be the number of switches, Sk be a set of all users Pi connected with the k-th switch Ck, 
and (uk, vk) be coordinates of Ck. 

3) Let f(wi, Pi, Ck) be a cost function for the transmission link connecting the i-th user Pi and k-
th switch Ck.  

4) The objective is to minimize the total cost of all links and all switches: 



 

 52

( ) ( )
1

min , ,
k k

m

i i k k ii S i S
k

W C f w P C q w
∈ ∈

=

⎡ ⎤= +⎣ ⎦∑ ∑ ∑    (1) 

where qk ∑ i∈Sk wi  is the cost of the k-th switch as a function of all outgoing and incoming flows.  
In this case, we do not consider the situation when the switches interact with each other because 
earth stations interact directly with a satellite. A detailed survey of various methods to solve the 
clustering problems, similar to the one described above, is presented in (Brimberg et al., 2000). 
 
Special cases of the problem 
Suppose the number m of switches is fixed, a cost of every switch is either small or flow 
independent, and switch locations are specified.  Then it is easy to find Sk.  Indeed 

Sk = {i: min1≤j≤m f(wi, Pi, Cj) = f(wi, Pi, Ck)}.      (2) 
In the other special case, when all Sk are known, it is easy to find the optimal location for the k-th 
switch: 

( ) ( ) ( ),min , ,
k k k

k k i i ku v i Sg S f w P C
∈

= ∑ for k = 1, …, m   (3) 

If f(wi, Pi, Ck) = wi * l2 (Pi , Ck), where 2 2 1/ 2
2 ( , ) [| | | | ]i k i k i kl P C a u b v= − + − , then the problem 

(3) is known as the Fermat-Weber problem.  It has been studied by many authors over the last 
forty years (Love et al., 1988; Verkhovsky and Polyakov, 2002).  Difficulties appear if the 
clusters Sk are not known, the cost of a switch is neither small nor flow independent, and the 
number m of switches and/or their best locations (uk, vk) for all k are not known either. 
 

Linear switching cost function 
If 

2 2 1k k k
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+∈ ∈ ∈
= +∑ ∑ ∑  for all S2k and  S2k+1, such that 2 2 1k kS S +∩ =∅  and 

2 2 1k k kS S S+∪ =  for all k=1, …, m, then the switching cost is a linear function of the network 
flow.  In this case, it is clear that the optimal partition is not affected by the switching costs.  
Therefore the more is the number of clusters, the less is the total cost, that is gk > g2k + g2k+1. 
 
Two-switch location problem 
It is important to emphasize that there is a substantial difference between the following two 
cases: m=1 and m=2. In the first case, only one single-switch minisum problem needs to be 
solved. In the case when m=2, multiple single-switch problems are solved by repetitive 
application of a specific algorithm, such as the Weiszfeld procedure (Love et al., 1988) for the 
Fermat-Weber problem.  The “naïve” approach is to check all possible pairs of clusters S1 and 
S2.  Then there are 2n-1–1 different ways to partition n points into two clusters S1 and S2 and for 
each configuration two single-switch location problems need to be solved.  Thus, the total time 
complexity of such a brute force algorithm is O(2n), (Kakusho, 1982). 

Now let us briefly consider existing exact methods for the cases when the switch costs are 
neglected. Drezner (Drezner, 1984) suggests to use a straight line passing through a pair of user 
points and mathematically proves that such method of separation is guaranteed to find the 
optimal partition when the cost function is proportional to distances. In this case, the number of 
partitions is equal to the number of user pairs, that is n(n–1). Obviously, two single-switch 
minisum problems have to be solved for each pair. Therefore the number of single-switch 
minisum problems that has to be solved is ( )2O n . Another exact method (Chen et al., 1998) 
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uses d.-c. programming, a recent technique of global optimization, to obtain a near-linear 
increase in the computation time as n increases. The approach is restricted to convex functions 
and thus has a limited scope of application to real-world problems. 

 
Binary partitioning algorithm 
The major idea of the proposed algorithm is based on experimental results demonstrating that a 
straight line, going through the optimal location for the single-switch minisum problem and one 
of the user points, in many cases can provide the optimal partition for a two-switch location 
problem with the same set of user points.  

Let us start with a general clustering algorithm and then derive an efficient procedure based 
on this algorithm. 
   Clustering algorithm  
1. Find a center of rotation R. 
2. Convert all points/users to the polar system of coordinates ( ), rα where R is the center of the 
coordinate system. 
Comment: All points are also divided into the ones above and below the horizontal line going 
through R. 
3. If α>180° then α:= α – 180°; (α,r):=(α, r, below), else (α,r):=(α, r, above). 
4. Lexicographically sort all points: Let ( ) ( )1 1 1 1 2 2 2 2: , , ; : , , .U r flag U r flagα α= =  If 1 2α α< , then 
U1 < U2; if 1 2α α= and r1<r2, then U1 < U2; if 1 2α α= and r1 = r2 and flag1=above, then U1 < U2. 
5. Rotate straight line L around R for all x between 0° and 180°. Let i = 1,…, n. If ( iα  <= x and 
flagi  = above) or ( iα  > x and flagi  = below), then Uk belongs to cluster S2; else Uk belongs to 
cluster S1. 

It is noteworthy that the user points are not simply sorted by angles, like in (Drezner, 1984), 
but are lexicographically ordered by angle, radius, and orientation. This approach excludes the 
special situation when two or more demand points lie on the same line, which had to be specially 
considered for the approach in (Drezner, 1984). It is obvious that n rotations are needed for the 
above algorithm. 

A good candidate for the pivot in the case of a two-switch location problem is the optimal 
switch location obtained by solving the single-switch location problem for the same set of users. 
In some cases, less than 25% of the conducted experiments, however, this method does not yield 
the optimal partition. It mostly happens when we get one or few “fugitive” users, for which the 
cost function value for the current cluster is higher than if the user would be placed into the other 
cluster. In the majority of cases, a simple loop similar to the heuristic algorithm developed in 
(Cooper, 1964) resolves the issue and results in the optimal partition. 

Now let us list the complete algorithm for the two-switch location problem. For simplicity, 
the points and indexes for these points are going to be considered as the same. 
   Binary partitioning algorithm 
Step 1: Solve the single-switch minisum problem for all n users to find the pivot for rotation. 

( ) ( )
0 0 0,

1
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n

i iu v
i

f w P C
=
∑     (4) 

Step 2: Do steps 2 – 4 of the clustering algorithm with C0 used instead of R. 
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Step 3: For all points i with flagi  = above, add their Cartesian coordinates to cluster S1.  
The rest of the points are added to cluster S2. 

Step 4: Let hmin be an arbitrary large number, SO1 := S1, SO2 := S2. 
For all users i = 1,…,n do the following (rotate the line L) { 
Step 4a: Let x := iα . If flagi  = above, then reassign the point i from cluster S1 to S2.  

  Else reassign the point i from cluster S2 to S1. 
 Step 4b: Compute  

( ) ( )
( )

( , )( ) : min , , , 1, 2.
k k
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 Step 4c: Compute  
( ) ( ) ( )
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 Step 4d: If h(x) < hmin then hmin := h(x), SO1 := S1, SO2 := S2.} 
Step 5: {“Fugitive” handling after the main algorithm is complete}  

Let count := 1; 
While count > 0 {reassignments were done in the previous step or this  

part is called the first time} 
{      count := 0; 
Step 5a: If f(wi, Pi, C1) > f(wi, Pi, C2) for i∈SO1, then reassign i∈SO2; count++. 

   If f(wi, Pi, C2) > f(wi, Pi, C1) for i∈SO2, then reassign i∈SO1; count++. 
Step 5b: Using (5) find the optimal locations of C1 and C2 for the new values of  

   SO1 and SO2.} 
Comment: C1, SO1, C2, SO2  is the final solution for the two-switch location problem. 

As can be seen from the pseudocode above, the algorithm requires solving O(n) single-switch 
location problems. Step 5 is very similar to the heuristic algorithm developed in (Cooper, 1964),  
and is used to handle the situation when a straight line going through C0 does not provide the 
optimal partition. 
 

Computer experiments and optimization 
We ran three hundred experiments with coordinates for the users and the associated weights 
generated using uniform random distribution on the interval (0,1). Cost functions 

( )2 ,i iw l P C
β

⎡ ⎤⎣ ⎦ , where  β = 0.7,…,1.0, were used. Switching costs were considered to be linearly 
dependent on the network flow and thus were not taken into account. 

According to (Veroy, 1989), the function h(x) sometimes demonstrates a bimodal behavior 
and a special optimal search algorithm developed in (Veroy, 1989) for any discrete periodic 
bimodal function can be applied. The optimal search algorithm reduces time complexity for such 
a function from ( ) ( )O to O logx x . In all the calculations, the minimal value obtained using that 
optimal search algorithm is compared with the minimal value produced by the non-accelerated 
algorithm before Step 5.  

The developed binary partitioning algorithm is compared with the exact algorithm proposed 
by Drezner (Drezner, 1984) and the well-known heuristic algorithm described by Cooper 
(Cooper, 1964), for which an initial random partition was  used.  

For n = 15,..,50, both the binary partitioning and Cooper’s algorithm are not always able 
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to give the exact solution for the two-switch location problem. At the same time, Cooper’s 
algorithm converges much faster (1–6 iterations versus n) to some stable condition, when no 
more reassignments could be made. The average relative deviation from the exact solution is 
slightly less for the binary partitioning algorithm. The function h(x) does not always demonstrate 
bimodal behavior and thus the values of the minimum cost obtained using the non-accelerated 
method and the optimal search algorithm are sometimes different by 5%. 

For n>50 (up to 1000 – highest calculated), both algorithms fail again to always provide the 
optimal solution. However, Cooper’s algorithm is sometimes giving values of h(x) up to 8% 
higher than the value found using the binary partitioning algorithm, which are always very close 
to the exact value due to the nature of the algorithm. Although the function h(x) generated by the 
binary partitioning algorithm is not always purely bimodal, it always demonstrates a good overall 
bimodal behavior with a deep clearly-seen minimum and, in majority of the cases, the optimal 
search algorithm is coming to the global minimum. In cases when it is not getting to the global 
minimum, the optimal search algorithm lands very close, never exceeding 0.50% from the 
minimal value of h(x). Considering the fact that Cooper’s algorithm is run after the main part of 
the binary partitioning algorithm is done (in Step 5), additional one or two reassignment-location 
steps usually compensate for the differences in the values of hmin obtained using the non-
accelerated algorithm and the optimal search algorithm version. Therefore, for n>50 the binary 
partitioning algorithm accelerated using the optimal search procedure developed in (Veroy, 
1989) almost always provides more accurate solution than Cooper’s algorithm. The number of 
iterations needed for the accelerated version of the binary partitioning algorithm is usually 1.2–4 
more than for Cooper’s algorithm. However, Cooper’s algorithm would have to be run for 
several, if not dozens, of initial random partitions to attain the same average accuracy as the 
accelerated binary partitioning algorithm.  
 
References 
Brimberg, J., Hansen, P., Mladenovic, M. and E. Taillard (2000); Improvements and Comparison  

of Heuristics for Solving the Uncapacitated Multisource Weber Problem; Operations 
Research, Vol. 48, No. 3 (pp. 444-460). 

Chen, P.-C., Hansen, P., Jaumard, B. and H. Tuy (1998); Solution of the Multisource Weber and  
Conditional Weber Problems by d.-c. Programming; Oper. Res., Vol. 46, No 4 (pp. 548-562). 

Cooper, L. (1964); Heuristic Methods for Location Allocation Problems; SIAM Review, Vol. 6  
(pp. 37-53). 

Drezner, Z. (1984);  The Planar Two-Center and Two-Median Problems; Transportation Science,  
Vol. 18, No. 4 (pp. 351-361). 

Kakusho, O. (Oct. 1982); Cluster analysis: Definition, Algorithm, and Validation; Proc. 6th Int.  
Conf. Patt. Recogn., Munich (pp. 131-133). 

Love, R. F., Morris, J. G. and G. O. Wesolowsky (1988); Facilities Location, Models and  
Methods; North-Holland. New York. 

Veroy (now Verkhovsky), B. (1989); Optimal Search Algorithm for Extrema of a Discrete  
Periodic Bimodal Function; J. Complexity, Vol. 5 (pp. 238-250). 

Verkhovsky, B. and Polyakov, Yu. (2002); Feedback Algorithm for the Single-Facility Minisum  
Problem; Annals of the European Academy of Sciences (pp. 127-136).  

 


