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The conventional approach to designing ultrafiltration/microfiltration (UF/MF) filters 
based on reduction of the concentration polarization and particle deposition to increase the 
permeate velocity is inherently associated with additional expenditures of power or other 
material resources, which makes it not enough cost-effective to be competitive with non-
membrane filtration processes in water and wastewater treatment applications. A completely 
opposite process design strategy based on utilization of the particle deposition on membrane 
surface to produce an additional (to permeate) volume of clarified water was recently 
suggested [1]. The latter process, called depth membrane filtration, does not require 
additional power expenditures and can provide high water recoveries, implying its high 
cost-effectiveness. The process theory is based on the assumption that the decrease in the 
rate of cake deposition can be caused by the desorption of particles from the membrane, or 
cake, surface. That is why the deposition equation in Ref. [1] has the form of reversible 
adsorption. However, most of the experimental studies on the transport of colloidal particles 
indicate that the desorption of colloidal particles is hardly likely in most practical 
applications. It is therefore of interest to study the depth membrane filtration process 
without particle desorption in which the decline in the rate of cake deposition is caused by 
the decrease in deposition coefficient due to the effect of repulsive colloidal interactions, 
permeation drag decline, and the like, which is implied by the modern theory of depth 
filtration [2]. 
 Consider a process 
of depth membrane 
filtration in which a dilute 
suspension with constant 
density and viscosity is 
clarified in a hollow fiber 
membrane (HFM) 
adsorber (Fig. 1). The 
vacuum providing a 
constant transmembrane 
pressure, which is the 
driving force of 
membrane filtration, is 
produced in the HFM 
lumens. The HFM 
packing density is close 
to the packing densities 
of granular beds, that is, 
about 0.5. Assume that 
the porous HFM 
membranes completely 
reject the suspended 
particles. The feed 
concentration and temperature remain constant. The diffusion of particles beyond the layer 
of surface forces is ignored, and the suspension is perfectly mixed in the plane 

 
Fig. 1. Rectangular cartridge-type outside-in hollow fiber membrane filter:  
(a) cartridge of HFM wafers (1, top plate; d, filter depth), (b) HFM wafer (2, 
perforated frame; 3, hollow fiber membrane), and (c) flow diagram (gray solid 
rings – cake layers; porous rings – hollow fibers) 
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perpendicular to the flow of liquid across the filter due to local flow instabilities and 
interfiber vortices and eddies. Particle dispersion and effects of filter housing walls are 
assumed to be negligible. The differential law of mass conservation can then be written as 

( )c wc s
t z t

∂∂ ∂Γ
+ = −

∂ ∂ ∂
,         (1) 

where c  is the concentration of suspended particles; t , the time; z , the filter depth 
coordinate; the liquid velocity w  is the velocity averaged over the cross section of all 
interfiber channels at z ; ( )/ms S S d= , the ratio of HFM shell surface area to the suspension 
volume inside the filter; Γ , specific cake deposit (cake mass per square meter of HFM shell 
surface area), mS , the total HFM shell surface area; S , the total cross section area of the 
interfiber space; d, the overall filter depth. 
 The permeate velocity of a hollow fiber membrane is governed by Darcy’s law: 

( )p
m c

PV
R r

=
µ + Γ

,         (2) 

where pV  is the permeate velocity; P, the transmembrane pressure (TMP); µ , the liquid 
viscosity; ( )0/mR P V= µ  is the clean membrane resistance; and cr  is the specific cake 
resistance. 

Liquid continuity equation in integral form is written as 

0
0

z

pw w sV dz= − ∫ ,         (3) 

where 0w  is the constant feed velocity. This implies that the decline in permeate flow rate 
with time is compensated by the equal increase in filtrate flow rate. 

It is also assumed that the formation of cake layer on the HFM shells cannot 
noticeably change the geometrical dimensions of interfiber channels, and that the value of  
TMP is the same throughout the channels. 

A clean filter initial condition will be used. The suspension concentration at filter 
inlet is assumed to be constant:  

0c c=    when 0, 0z t= > ;      (4) 
0, 0c = Γ =     when  0, 0t z= > .      (5) 

 To close the system of equations, a specific expression for the deposition rate in Eq. 
(1) has to be selected. In general, the deposition rate equation for an outside-in HFM filter, 
that is, for a depth filter with semipermeable particle collectors, may be written as 

( )1 2 3
Γ , pk c k k V c
t

∂
= Γ − Γ +

∂
ψ ,        (6) 

where 1k  is the deposition coefficient; ψ , the parameter vector characteristic of the filtration 
process; 2k , the re-entrainment coefficient; 3k  is a constant. 
 The first term on the right side of Eq. (6) is adopted from depth filtration theories [2], 
describing the deposition flux of particles onto the membrane surface (or onto the cake layer 
after it is formed). For Brownian (submicron) particles, the deposition is usually caused by 
Brownian diffusion and surface (colloidal) interaction forces, such as electrical double layer 
and van der Waals forces. For micron particles, the deposition is typically attributed to 
inertial impaction, interception, sedimentation, electrostatic forces, and surface interaction 
forces. In general, the deposition coefficient 1k  varies with specific cake deposit Γ , which 
takes into account the effect of deposited particles on the deposition flux. 
 The second term on the right side of Eq. (6) is adopted from depth filtration [2] and 
reversible adsorption theories, describing the particle detachment flux from the membrane 
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surface (or cake layer). For Brownian particles, the re-entrainment is usually caused by 
desorption of particles from the collector surface. For micron particles, the re-entrainment is 
commonly attributed to unfavorable hydrodynamic conditions (flow instabilities). 
Generally, the re-entrainment coefficient 2k  may be variable. 
 The last term in Eq. (6) accounts for the deposition rate increase due to the 
permeation drag. The linear dependence of the deposition rate on the product of permeate 
velocity and particle concentration is selected because the classical cake filtration equation, 
which corresponds to 1 2 30, 0, 1k k k= = = , can describe the permeate flux decline in some 
surface microfiltration experiments without axial flow. 
 A number of studies showed that particle deposition on HF membranes is usually 
irreversible. Neglecting the particle detachment flux and using the fact that pV  is a function 
of Γ , Eq. (6) may be rewritten as 

( )Γ , c
t

∂
= β Γ

∂
ψ ,          (7) 

where β  is a general function of Γ  depending on the parameter vector characteristic of the 
filtration process ψ , the components of which are phenomenological constants [2]. 
 The problem (1)–(5), (7) with the help of simple mathematical transformations takes 
the following form for the function Γ : 

( )
( ) 0 0

10

1
11

z dzw sV
t

s
t t z t

⎛ ⎞⎧ ⎫∂Γ ⎪ ⎪∂ −⎜ ⎟⎨ ⎬⎜ ⎟β Γ ∂ + χ Γ⎛ ⎞ ⎪ ⎪∂ ∂Γ ∂Γ⎩ ⎭⎝ ⎠+ = −⎜ ⎟⎜ ⎟∂ β Γ ∂ ∂ ∂⎝ ⎠

∫
,     (8) 

00, 0 :z t= > Γ = Γ ;  0, 0 : 0, 0;t z
t

∂Γ
= > Γ = =

∂
    (9) 

where 0Γ  is found by solving the equation 

( )0
0 0

d
c

d t
Γ

= β Γ ,          (10) 

00, 0t = Γ = .          (11) 
Here 1 /c mr Rχ = . 

Converting the problem (8)–(9) into dimensionless form gives: 

( ) ( ) 0

1 1 1 1
1

Z dZ
N Z Nβ χ

⎛ ⎞⎧ ⎫⎛ ⎞∂ ∂ γ ∂ ∂ γ ∂ γ⎪ ⎪⎜ ⎟+ − ξ = −⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ τ Β γ ∂ τ ∂ Β γ ∂ τ + γ ∂ τ⎪ ⎪⎝ ⎠ ⎩ ⎭⎝ ⎠
∫ ,     (12) 

00, 0 :Z = τ > γ = γ ;  0, 0 : 0, 0;Z ∂ γ
τ = > γ = =

∂ τ
     (13) 

where 0 0
1

0 0 0

, , , , , ,
c sV dz s s ds t Z N N N

d c s w s wχ β α
β α

τ = β = γ = Γ = χ = = ξ =
β

. 

Here 0γ  is found by solving 

( )0
0

d
d
γ

= Β γ
τ

,          (14) 

00, 0τ = γ = .          (15) 
The two main functions to be found are the dimensionless permeate velocity 

averaged over the adsorber depth 
1

0 1
dZV

Nχ

=
+ γ∫           (16) 

and the dimensionless concentration of suspended particles fC  at the filter outlet (filtrate 
concentration) 
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( )
( ),11

,1fC
∂ γ τ

=
∂ τΒ γ τ⎡ ⎤⎣ ⎦

.         (17) 

Introducing a new function  

0 1

Z dZv
Nχ

=
+ γ∫ ,           (18) 

which represents the permeate flow rate for the filter region found between the adsorber 
inlet and the plane with coordinate Z, reduces the problem to solving the equation: 

[ ] [ ] ( )
2 2 22 2 21 1 1 1

/ /
v v v v v vv

v Z Z Z N Z v Z Z Z Z Z

− − −

β

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − ξ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ τ Β ∂ ∂ ∂ ∂τ ∂ ∂ Β ∂ ∂ ∂ ∂τ ∂ ∂ ∂τ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (19) 

with initial and boundary conditions 

( ) ( ) ( ) ( )
( )

0, ,0 10, , ,0 0, 0,
1 ,0

v Z v
v Z Z v

Z Nχ

∂ ∂ τ
= τ = = =

∂ τ ∂ + γ τ
.    (20) 

 Problem (19)–(20) can be solved numerically using the generalized implicit Crank-
Nicholson finite difference method [3]. In this case, ( ) ( ),1V vτ = τ  and the dimensionless 
specific cake deposit γ  can be calculated from 

1
1 1v

N z

−

χ

⎡ ⎤⎛ ⎞∂
⎢ ⎥γ = −⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

.          (21) 

 As the filtrate concentration given by Eq. (17) and other particle retention 
characteristics of the filter are functions of partial derivatives of v  with respect to time and 
coordinate, the latter should be calculated with a very high accuracy. Considering that Eq. 
(19) is a strongly nonlinear partial differential equation, the numerical solution would 
consume too much time to be used in practical calculations. Therefore, a much faster 
approximate solution is developed next. 
 The end-point interpolation method using the average value of permeate velocity [4] 
will be applied. With a constant value of p pV V= , Eqs. (1)-(3) can be rewritten as 

( )0 p p
c cw s V z s s V c
t z t

∂ ∂ ∂Γ
+ − = − +

∂ ∂ ∂
,       (22) 

( )
1

1 1
0 0 1

1 1
1 , ,

t d

p
p

V dz dt
t d t z V

=
+ χ Γ∫ ∫ .       (23) 

Introducing a new coordinate 0

0

ln 1 p

p

s Vw
x z

ws V

⎡ ⎤
⎢ ⎥= − −
⎢ ⎥⎣ ⎦

, Eq. (22) is transformed to 

0 p
c cw s s V c
t x t

∂ ∂ ∂Γ
+ = − +

∂ ∂ ∂
.        (24) 

 The exact solution to the problem (24), (7), (4)-(5) in terms of uncoupled ordinary 
differential equations can be obtained using the technique described in Ref. [2]. The mass 
conservation principle applied to a layer of hollow fibers of corrected depth η  over a time 
interval of 0 to T leads to 

( ) ( ) ( ) ( )0 0 0
0 0 0 0

, , , ,
T T T

pw c dt w c t dt s x T c x T s c x t V dt dx
η ⎛ ⎞

= η + Γ + −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫ .   (25) 

 According to Eq. (7), 

( ) ( )
1,c t

t η

∂Γ
η =

β Γ ∂
.         (26) 

 As Γ  is a function of t and x , d Γ  can be written as 
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x t

d dt dx
t x

⎛ ⎞ ⎛ ⎞∂Γ ∂Γ
Γ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

,        (27) 

which at x = η  becomes 

d dt
t η

⎛ ⎞∂Γ
Γ = ⎜ ⎟∂⎝ ⎠

.          (28) 

Substituting Eqs. (26)-(28) into Eq. (25), differentiating with respect to η , and 
replacing η  and T with x  and t, respectively, yields 

( )
( )0 0

p
t

ds c s V
x w

Γ⎛ ⎞β Γ⎛ ⎞∂Γ Γ
= − Γ + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ β Γ⎝ ⎠ ⎝ ⎠

∫ .       (29) 

Introducing a new time coordinate 0/t x wθ = − , one obtains 
( )

( )0 0
p

s dV
x w

Γ

θ

⎛ ⎞β Γ⎛ ⎞∂Γ Γ
= − Γ −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ β Γ⎝ ⎠ ⎝ ⎠

∫ .       (30) 

 The exact solution to the problem (24), (7), (4)-(5) in dimensionless form can then be 
written as  

( ) ( )0
av

d dN
d X

γ

β

⎛ ⎞γ γ
= −Β γ γ − ξ⎜ ⎟⎜ ⎟Β γ⎝ ⎠

∫ ,       (31) 

00,X = γ = γ ,          (32) 
where [ ]ln 1 /av avX Z= − − ξ ξ , av pvξ = ξ , 0/p pv V V= , and 0γ  is found by solving the ordinary 
differential problem 

( )0
0

d
d
γ

= Β γ
Θ

,          (33) 

00, 0Θ = γ = ,          (34) 
where 0sΘ = β θ . 
 If the integral in Eq. (31) cannot be evaluated analytically, Eq. (31) can be 
differentiated to yield 

( ) ( ) ( )

22

2 2

1 1 0avd d d dN
d d X d Xd X β

⎛ ⎞⎛ ⎞ ξγ Β γ γ
− + − =⎜ ⎟⎜ ⎟ ⎜ ⎟Β γ γ Β γΒ γ ⎝ ⎠ ⎝ ⎠

,     (35) 

where in addition to the boundary condition (32) we have 

( ) ( )
0

0 0
0

0, av
d dX N
d X

γ

β

⎛ ⎞γ γ
⎜ ⎟= = −Β γ γ − ξ
⎜ ⎟Β γ⎝ ⎠

∫ .      (36) 

 When the function Γ  is determined from Eqs. (32)–(36), the integral equation (23) 
can be solved by the method of successive approximations at three points, and then the 
function pv  can be built for the whole time interval using the interpolating function 

( ) 32
11

aa
avv a

−
= + τ ,         (37) 

where 1a , 2a , 3a  are positive constants determined using the three known values of avv  and 
corresponding time intervals. 
 Figs. 2-3 illustrate the dependence of the dimensionless permeate flow rate and 
filtrate concentration on time calculated by the numerical and end-point interpolation 
methods. As in [1] with reversible adsorption, the adsorber with irreversible adsorption can 
provide a constant production rate at constant TMP for a sufficiently long separation cycle. 
It is also seen that the approximate method with a computation time of few minutes 
provides a practically acceptable error in calculating the desired curves. Thus, the 
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approximate method can be used in engineering calculations instead of the high-accuracy 
numerical method, which requires many hours of computation time. 
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Fig. 2. Decline of permeate flow rate with time 
( 2.25,Nβ = 0.01Nχ = , 1ξ = , 1

0 0.18 ss −β = , 

[ ] 41 8.3 10−Β γ = − × γ ): line – approximate 
solution, circles – numerical solution. 
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Fig. 3. Variation of filtrate concentration with time 
( 2.25,Nβ = 0.01Nχ = , 1ξ = , 1

0 0.18 ss −β = , 

[ ] 41 8.3 10−Β γ = − × γ ): line – approximate 
solution, circles – numerical solution. 


