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We examine the relation between temperature and logarithmized dust flux

from the EPICA Dome C ice core (Antarctica) for the last 800,000 years.

Our focus is on the nonstationarity analysis of dust flux time series rather

than the regression analysis of correlations between temperature and dust flux

(conventional method in paleoclimatology). The analysis is performed using

flicker-noise spectroscopy, a phenomenological statistical physics framework

developed for the analysis of natural signals with stochastically varying

components. Our study shows that the logarithmized dust flux time series

is statistically nonstationary. It contains alternating intervals of quiescence

and high activity. The quiescent intervals appear to be related to glacial

conditions in the temperature series. The periods of high activity appear to

correspond to warming events, potentially leading to interglacial conditions.

These results can be used to explain why significant correlations between

temperature and dust flux exist in the glacial conditions and why there is

virtually no correlation during interglacial periods.
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1.1 Introduction

Paleoclimatology deals with the analysis of climate change on the scale

of Earth’s entire history. The records for past climate are reconstructed

indirectly based on the ”proxy” data acquired from paleoclimatic archives,

such as ice cores, tree rings, and marine sediment cores. The correlations

between the proxy data for modern age and recent climate records are used

to build mathematical models that can be applied to infer past climate using

the proxy data for the time period of interest. This procedure generally

involves a large number of factors with complex interactions and feedback

loops.

One of major factors studied in paleoclimatology is the aerosol load of

the atmosphere. Mineral dust aerosols are generally emitted from deserts,

and their small-sized fractions can travel to distant areas, for example polar

regions. This enables paleoclimatologists to examine the dust content in ice

cores from polar regions and draw conclusions about atmospheric processes

on a global scale. In this study, we examine data from the European Project

for Ice Coring in Antarctica (EPICA) Dome C ice core located on the

eastern Antarctic plateau. Dust flux in the ice, which is typically measured

as the concentration in (ng g−1) for soluble dust and particle number

concentration in (P ml−1) for insoluble dust as a function of ice core depth,

is generally sensitive to source emissions and atmospheric cleansing, both of

which are linked to the characteristics of the hydrological cycle, that is in

turn related to sea surface temperature.

This relationship between dust and temperature is nonlinear: it has mul-

tiple modes and thresholds with respect to temperature (7). Due to the

low accumulation rate in Antarctica and the log-normal distribution of dust

proxy data, the logarithmic values of dust flux are generally used for studying

the dust-temperature coupling (2), effectively leading to a log-linear model.

Typically, the logarithms of dust fluxes and temperature are uncorrelated for

warm periods (interglacial mode) and correlated for relatively cold periods

(glacial conditions) (7). Several types of correlations are observed depending

on temperature thresholds and temporal proximity to glacial terminations

(7, 10). These correlations are established using regression analysis methods.

In this chapter, we look beyond the conventional regression analysis

techniques by analyzing the statistical nonstationarity in the high-frequency

component of logarithmized dust flux. We show that high nonstationarity

on certain time intervals may be related to atmospheric reorganizations

that are likely to accompany major climatic transitions. In other words,

nonstationarity analysis provides new information on the dynamics of past
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climate change, which cannot be extracted by regression analysis.

To examine the nonstationarity, we use flicker-noise spectroscopy (FNS),

a phenomenological framework for extracting information from time series

with stochastically varying components (16, 17, 18). We apply the FNS

nonstationarity factor function to identify the time intervals of major rear-

rangements (within relatively short time intervals) of the complex system

under study. The FNS nonstationarity factor was previously used to locate

precursors to strong earthquakes (1, 12, 19, 3, 4, 11).

The chapter is structured as follows. Section 1.2 introduces the principles

of FNS. Sections 1.3 and 1.4 explain the algorithms for smoothing and

evaluating the nonstationarity factor, respectively. Section 1.5 depicts the

complete procedure for the nonstationarity analysis of dust flux time series.

Section 1.6 briefly describes the experimental data. The results of the

analysis and their interpretation are provided in Section 1.7. The main

conclusions and directions for future research studies are given in Section 1.8.

1.2 Principles of Flicker-Noise Spectroscopy

Here, we will only deal with the basic FNS relations needed to understand

the nonstationarity factor. FNS is described in more detail elsewhere (16,

17, 18, 15, 8).

In FNS, all introduced parameters for signal V (t), where t is time, are

related to the autocorrelation function

ψ(τ) = 〈V (t)V (t+ τ)〉T−τ , (1.1)

where τ is the time lag parameter (0 < τ ≤ TM ) and TM is the upper bound

for τ (TM ≤ T/2). This function characterizes the correlation in values of

dynamic variable V at higher, t+τ , and lower, t, values of the argument. The

angular brackets in relation (1.1) stand for the averaging over time interval

[0, T − τ ]:

〈(...)〉T−τ =
1

T − τ

∫ T−τ

0
(...) dt. (1.2)

The averaging over interval [0, T − τ ] implies that all the characteristics

that can be extracted by analyzing functions ψ(τ) should be regarded as

the average values on this interval.

To extract the information contained in ψ(τ) (〈V (t)〉 = 0 is assumed), the

following transforms, or “projections”, of this function are analyzed: cosine
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transforms (“power spectrum” estimates) S(f), where f is the frequency,

S(f) = 2

∫ TM

0
〈V (t)V (t+ t1)〉T−τ cos(2πft1) dt1 (1.3)

and its difference moments (Kolmogorov transient structure functions) of

the second order Φ(2)(τ)

Φ(2)(τ) =
〈

[V (t)− V (t+ τ)]2
〉
T−τ

. (1.4)

Here, we use the quotes for power spectrum because according to the

Wiener-Khinchin theorem the cosine (Fourier) transform of autocorrelation

function is equal to the power spectral density only for wide-sense stationary

signals at infinite integration limits.

The information contents of S(f) and Φ(2)(τ) are generally different, and

the parameters for both functions are needed to solve parameterization prob-

lems. By considering the intermittent character of signals under study, in-

terpolation expressions for the stochastic components Φs
(2)(τ) and Ss(f) of

S(f) and Φ(2)(τ), respectively, were derived using the theory of generalized

functions by (14). It was shown that the stochastic components of struc-

ture functions Φ(2)(τ) are formed only by jump-like irregularities (“random

walks”), and stochastic components of functions S(f), which characterize

the “energy side” of the process, are formed by spike-like (inertial) and

jump-like irregularities.

1.3 FNS Smoothing Procedure

The analysis of experimental stochastic series often requires the original data

to be smoothed. In this study, we apply the “relaxation” procedure proposed

for nonstationary signals by (13) based on the analogy with a finite-difference

solution of the diffusion equation, which allows one to split the original signal

into low-frequency VR(t) and high-frequency VF (t) components.

Consider the one-dimensional diffusion equation for VR :

∂ VR
∂ τ

= χ
∂2 VR
∂ t2

(1.5)

with symmetric boundary conditions

∂ VR
∂ t

= 0 at t = 0, (1.6)
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∂ VR
∂ t

= 0 at t = T (1.7)

and initial condition

VR(0) = V (t), (1.8)

where χ is a constant diffusion coefficient.

Writing a forward difference for the local term and second-order central

difference for the diffusion term, Equation (1.5) gets transformed to

V i+1
k − V i

k

∆τ
= χ

V i
k+1 − 2V i

k + V i
k−1

(∆t)2 , (1.9)

where i is the “time” index and k is the “spatial” index. Here, the subscript

R is dropped for simplicity.

After introducing ω = χ∆τ
(∆t)2

, Equation (1.9) can be further transformed

to the following explicit finite difference expression:

V i+1
k = ω V i

k+1 + (1− 2ω )V i
k + ω V i

k−1. (1.10)

Analogously, the finite difference formulation for the complete problem

(1.5)–(1.9) can be written as

V i+1
1 = (1− 2ω )V i

1 + 2ωV i
2 , (1.11)

V i+1
k = ωV i

k+1 + (1− 2ω )V i
k + ωV i

k−1, (1.12)

V i+1
Nt

= (1− 2ω )V i
Nt + 2ωV i

Nt−1. (1.13)

Here, i is the current iteration number and Nt is the length of the time

series. The smoothing procedure (1.11)–(1.13) is unconditionally stable for

ω < 1/2, which is the maximum allowed value for ω in the smoothing

algorithm. There are two input parameters: the number of iterations imax
(largest value for i), which is equivalent to a certain “cutoff” frequency for

the time series under study, and the value for ω. Expressions (1.11)–(1.13)

are evaluated at each iteration.

In summary, the smoothing procedure finds new values of the signal at

every “relaxation” step using its values for the previous time step, yielding

the low-frequency component VR at the end. The high-frequency component

VF is obtained by subtracting VR from the original signal. Conceptually

speaking, this algorithm progressively reduces the local gradients of the

“concentration” variable, causing the points in every triplet to come closer

to each other.
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1.4 FNS Nonstationarity Factor

To analyze the effects of nonstationarity in real processes, we study the

dynamics of changes in Φ(2)(τ) for consecutive ”window” intervals [tk, tk+T ],

where k = 0, 1, 2, 3, ... and tk = k∆T , that are shifted within the total

time interval Ttot of experimental time series (tk + T < Ttot). The averaging

interval T and difference ∆T are chosen based on the physical understanding

of the problem in view of the suggested characteristic time of the process,

which is the key parameter of system evolution.

The FNS nonstationarity factor CJ(tk) is defined as

CJ(tk) = 2 ·
QJk − P Jk
QJk + P Jk

· T
∆T

, (1.14)

QJk =
1

αT 2

αT∫
0

tk+T∫
tk

[VJ(t)− VJ(t+ τ)]2 dt dτ , (1.15)

P Jk =
1

αT 2

αT∫
0

tk+T−∆T∫
tk

[VJ(t)− VJ(t+ τ)]2 dt dτ . (1.16)

Here, J indicates which function VJ(t) (J = R, F or G) is used, and the

subscripts R, F , and G refer to the low-frequency (regular) component,

high-frequency (fluctuation) component, and unfiltered signal, respectively.

Note that the integrands in Eqs. (1.15)–(1.16) correspond to the structural

function Φ
(2)
J (τ) given by Eq. (1.4).

The FNS nonstationarity factor in discrete for is written as (b = b∆T/∆tc,
N1 = bαNc):

CJ(tk) = 2 ·
QJk − P Jk
QJk + P Jk

/
∆T

T
, (1.17)

QJk =
1

N1

N1∑
nτ=1

1

N − nτ

N−nτ+kb∑
m=1+kb

[VJ(m)− VJ(m+ nτ )]p, (1.18)

P Jk =
1

N1

N1∑
nτ=1

1

N − nτ

N−nτ+(k−1)b∑
m=1+kb

[VJ(m)− VJ(m+ nτ )]p. (1.19)
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Note that functions Φ
(2)
J (τ) can be reliably evaluated only on the τ interval

of [0, αT ] that is less than half the averaging interval T ; i.e., α < 0.5.

In earthquake prediction studies, the phenomenon of “precursor” occur-

rence is assumed to be related to abrupt changes in functions Φ(2)(τ) when

the upper bound of the interval [tk, tk + T ] approaches the time moment tc
of a catastrophic event accompanied by total system reconfiguration on all

space scales. Graphically, this corresponds to peaks in the plots of nonsta-

tionarity factor.

1.5 Experimental Data

The EPICA Dome C ice core was drilled in East Antarctica (75◦06′ S;

123◦21′ E) and covers the last 800,000 years (5). From a depth of 24.2m

down to 3200m, a Continuous Flow Analysis (CFA) system (9) was applied

to measure, among others, Ca2+, Na+, and dust particles. The data gath-

ered with this method have a nominal depth resolution of ∼1 cm, taking

dispersion in the CFA system into account, which corresponds to a formal

sub-annual temporal resolution at the top and up to ∼25 years at the bot-

tom of the ice core. Practically, surface snow mixing and dispersion in the

ice result in a lower effective temporal resolution.

In this study, we examine the dust flux time series derived using the

principal component analysis of three complete datasets recorded at the

EPICA Dome C ice core: soluble Ca2+ and non-sea-salt Ca2+ concentrations,

as well as insoluble dust particle numbers (6). This dataset, hereafter referred

to as PC1, was calibrated to dust mass flux units using a two-sided regression

analysis between PC1 and dust flux measurements from standard Coulter

Counter analysis. More detailed description is provided elsewhere (6).

1.6 Procedure for Analysis

The PC1 time series contains several small gaps (generally not exceeding

few sampling points). These missing values were estimated using a linear

interpolation between the values adjacent to the gap. Then the time series

was ordered chronologically (instead of the standard order by age used in

paleoclimatology). The PC1 dust flux values were next logarithmized (due to

the low accumulation rate in Antarctica and the log-normal distribution of

dust proxy data) to study its correlation with temperature. As a first step, we

applied a moving average operation to the time series using 5-point subsets to

minimize the effect of single-point spikes. The low-frequency part of the PC1
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dust flux is dominated by orbital frequencies (due to eccentricity, obliquity,

and precession parameters of Earth’s orbit around the Sun) and not relevant

to high-frequency changes in Earth’s atmosphere. It was therefore excluded

using the FNS smoothing procedure (see chapter 1.3), in which we chose the

number of iterations imax in such a way that it corresponds to an effective

“cuttoff” frequency of (5 kyr)−1. Finally, the nonstationarity factors CF for

different values of averaging interval T were computed, and the resulting

time series were reordered by age.

To estimate the significance thresholds corresponding to background noise,

the same procedure that was applied to the logarithmized dataset of PC1 was

performed for synthetic Gaussian noise (in view of the fact that the power

spectrum estimate for the high-frequency component of logarithmized dust

flux has a slope relatively close to 0). The histogram of CF for Gaussian

noise was then fitted to the Burr distribution (FNS nonstationarity factor

generally has a skewed asymetric distribution that can be well-approximated

by the Burr distribution). The 95% and 97.5% significance thresholds were

computed for the Gaussian noise signal using the cumulative distribution

function. The ratio of the count of values above the threshold for PC1 to the

count for Gaussian noise was calculated to check the statistical significance.

1.7 Results and Discussion

Figures 1.1 and 1.2 illustrate the time series for temperature (5), logarith-

mized PC1, and its low-frequency and high-frequency components for the

last 800 kyr and 100 kyr, respectively. It can be seen that temperature and

logarithmized PC1 (as well as its low-frequency part) are generally anticor-

related for glacial (low temperature) intervals. During interglacial intervals

(highest temperatures), temperature and logarithmized PC1 are much less

correlated. This relationship can be examined by regression methods and is

discussed in detail elsewhere (7).

Our focus is on the behavior of the high-frequency component, which in

this case includes the frequencies between ∼ (5, 000 yr)−1 and ∼ (50 yr)−1.

The lower frequency bound corresponds to the ”cutoff” for the FNS smooth-

ing procedure, and the upper frequency bound is obtained as a result of ap-

plying the moving average procedure on 5-point subsets. Although it is hard

to see any direct correlations between temperature and the high-frequency

component of logarithmized PC1, one can observe some apparent nonsta-

tionarity in the high-frequency component displayed in Fig. 1.1. This non-

stationarity can be examined using the FNS nonstationarity factor.

Figures 1.3 and 1.4 show temperature along with the nonstationarity fac-
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Figure 1.1: Temperature, logarithmized dust flux at EPICA Dome C, and
its low-frequency and high-frequency components for the last 800 kyr.
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Figure 1.2: Temperature, logarithmized dust flux at EPICA Dome C, and
its low-frequency and high-frequency components for the last 100 kyr.
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tor for the high-frequency component of logarithmized PC1 at the averaging

intervals of 12.5, 25, and 37.5 kyr for the last 800 kyr and 100 kyr, respec-

tively. Each plot for nonstationarity factor CF also displays two thresholds,

95% (lower) and 97.5% (upper), estimated using the analysis of the nonsta-

tionarity factor for Gaussian noise in terms of the Burr distribution. The

value of the 95% threshold for CF is 3.80–3.84 for all three values of the

averaging intervals. The values for the 97.5% threshold lie in the range from

5.70 to 5.76. The ratios of the count of points above the 95% threshold

for PC1 to the count for Gaussian noise are 1.67:1, 1.40:1, and 1.29:1 for

T=12.5, 25, and 37.5 kyr, respectively. In the case of the 97.5% threshold,

the ratios are 2.91:1, 2.52:1, and 2.12:1, respectively. The highest values of

the ratio correspond to the smallest averaging interval (12.5 kyr).

Figure 1.3 shows that higher values of the averaging interval T lead to

more non-uniform distribution of nonstationarity factor. There are intervals

of high activity along with quiescent intervals. The plot for T = 37.5 kyr

demonstrates that quiescent intervals correspond to glacial conditions while

the intervals of high activity appear to happen when substantial warming

is observed. Physically, this may imply that glacial climate is generally

stable until some perturbation (warming) occurs. The perturbation may

grow into a large-scale instability, possibly associated with an atmospheric

reorganization at multiple scales. This allows us to explain why when the

climate system is stable, clear anticorrelations between temperature and

logarithmized dust are observed; and then when the climate system becomes

unstable, the correlations start to disappear (7).

Figure 1.4 illustrates the intermittence between quiescent and active

periods in the plots of nonstationarity factor CF for the last 100 kyr. For

instance, there is a quiescent interval in the CF plots between 20 kyr and 38

kyr before present (BP) for all values of T , which coincides with full glacial

conditions (temperature values do not exceed 212 K). However, there are

elevated levels of nonstationarity in the CF plot between 60 and 38 kyr BP,

which corresponds to a period with large temperature variations. Especially

during the last glacial-interglacial transition (10-20 kyr BP), it can be seen

that CF at T=12.5 kyr is most informative. In this case it is due to the

fact that the time scale of individual features (climatic events) in the plot of

temperature is much smaller for the interval from 0 to 100 kyr BP (Fig. 1.4)

as compared to the range from 0 to 800 kyr BP (Fig. 1.3). If one looks at

a more granular level, the values of the averaging interval should be further

reduced to a level comparable to the characteristic time-scale of observed

climatic events.
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Figure 1.3: Temperature and nonstationarity factor for the high-frequency
component of logarithmized PC1 at the averaging intervals of 12.5, 25, and
37.5 kyr for the last 800 kyr. Horizontal lines in each plot for CF correspond
to 95% (lower) and 97.5% (upper) thresholds for Gaussian noise.
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Figure 1.4: Temperature and nonstationarity factor for the high-frequency
component of logarithmized PC1 at the averaging intervals of 12.5, 25, and
37.5 kyr for the last 100 kyr. Horizontal lines in each plot for CF correspond
to 95% (lower) and 97.5% (upper) thresholds for Gaussian noise.
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1.8 Concluding Remarks

Our study shows that the dust flux time series derived from the EPICA

Dome C ice core data is statistically nonstationary. It contains alternating

intervals of quiescence and high activity. The quiescent intervals appear

to be related to cold conditions in the temperature series (5), whereas

periods of high activity seem to correspond to warming events, potentially

leading to interglacial conditions. It is generally thought there is a significant

correlation between dust flux and temperature records during glacial periods

and virtually no correlation during interglacial periods (7). Our results

suggest that the climate system is stable during cold times (quiescent

intervals), which is why the correlation is observed. Conversely, the climatic

system seems to be perturbed by warming and lose its stability (high activity

intervals), thus breaking down the causal link between Southern Hemisphere

surface temperature and dust flux in Antarctica.

The main goal of this study is to demonstrate that nonstationarity anal-

ysis and particularly the FNS nonstationarity factor may provide new in-

formation in the analysis of loglinear models used in paleoclimatology. This

information cannot be acquired using regression methods but may explain

why certain correlations are present or absent. The information from non-

stationarity analysis may also help in developing climate models that study

the onset of unstable climatic modes. To form a more complete picture of

how nonstationary processes in atmospheric signals interact with tempera-

ture, it is necessary to study other climate proxies for Antarctica as well as

other geographic regions. One would also need to analyze the time series at

different scales (using different values of the averaging interval in evaluat-

ing the FNS nonstationarity factor) and examine the behavior for various

glacial-interglacial climatic cycles, as well as millennial-scale oscillations in

both hemispheres.
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